

Published on Web 04/08/2009

Solar Water Oxidation by Composite Catalyst/α-Fe₂O₃ Photoanodes

Diane K. Zhong, Jianwei Sun, Hiroki Inumaru, and Daniel R. Gamelin* Department of Chemistry, University of Washington, Seattle, Washington 98195-1700

Received March 3, 2009; E-mail: Gamelin@chem.washington.edu

The photoelectrochemical (PEC) conversion of photon power into chemical fuels offers an attractive approach to storing solar energy, ^{1,2} but it poses many fundamental chemical challenges. Hematite (α -Fe₂O₃) has emerged as a prototype photoanode material for testing strategies to overcome the challenging four-electron oxidation of water,² which under basic conditions is described by eq 1.

$$4OH^- \rightarrow O_2 + 4e^- + 2H_2O \tag{1}$$

Hematite meets many of the target photoanode requirements: It is inexpensive, oxidatively robust, environmentally benign, and absorbs visible light ($E_g \sim 2.1$ eV). Although the α -Fe₂O₃ valence band edge potential is >1 V more negative than required for eq 1 thermodynamically, water oxidation by photogenerated valenceband holes in α -Fe₂O₃ is kinetically inefficient, and additional anodic overpotentials are typically required before significant PEC water splitting is observed. A remaining fundamental limitation of α -Fe₂O₃ is that its conduction band edge potential resides ~200 mV below that required to drive the cathodic half-reaction (eq 2).

$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$
(2)

Tandem PEC/photovoltaic (PV) configurations have been envisioned to provide the bias needed to meet these demands.³ Recent advances in controlled growth and doping of α -Fe₂O₃ nanostructures²⁻⁶ have overcome many of the limitations associated with the short holediffusion length (\sim 2–4 nm), low electron mobility (\sim 10⁻¹ cm² V⁻¹ s^{-1}), and efficient charge carrier recombination characteristics of bulk α -Fe₂O₃, yielding promising PEC performance. For example, an overall solar-to-hydrogen power conversion efficiency of ~2.1% has been estimated for one set of mesostructured α -Fe₂O₃ photoanodes when powered by a PV device providing 1.4 V in a tandem configuration.^{3b} Unfortunately, many low-cost PV devices such as dye-sensitized solar cells or organic PVs typically provide <1 V, and two such PVs in series would thus be required to provide the necessary 1.4 V. The development of α -Fe₂O₃ photoanodes that require smaller overpotentials to oxidize water, such that they could be powered by single lowcost PV cells, would thus be attractive for reducing solar hydrogen production costs.

Recently, electrochemical water oxidation with low overpotentials was demonstrated over a range of pH values using an amorphous cobalt/phosphate catalyst ("Co-Pi") electrodeposited onto ITO or FTO electrodes.⁷ Remaining uncertainties about the catalyst's precise microscopic identity do not diminish its attractiveness for water-splitting PECs. Co-Pi requires only a 0.41 V overpotential at pH 7 to oxidize water with a current density of 1 mA/cm²,^{7a} whereas the α -Fe₂O₃ valence band edge potential provides $>\sim$ 1.2 V. Photogenerated holes in α -Fe₂O₃ should thus be amply capable of driving water oxidation by this electrocatalyst. Here we report that composite photoanodes made by electrodeposition of Co-Pi onto mesostructured α -Fe₂O₃ show > 350 mV cathodic shifts of the onset potential for PEC water oxidation while retaining substantial photocurrent densities.

Figure 1. SEM images of mesostructured α -Fe₂O₃ photoanode before (a,b) and after (c,d) electrodeposition of Co-Pi catalyst. The catalyst layer cracking occurs upon drying for the SEM measurement and in some cases allows inspection of the catalyst underside: Panel (d) shows that the Co-Pi underside topology conforms to the α -Fe₂O₃ mesostructure.

Following previous reports,^{3b-d} mesostructured Si-doped α -Fe₂O₃ photoanodes of 400–500 nm thickness were grown by atmospheric pressure chemical vapor deposition (APCVD) using Fe(CO)₅ and TEOS as precursors, delivered to an FTO substrate at 470 °C using Ar carrier gas. SEM images of a representative α -Fe₂O₃ photoanode are shown in Figure 1a,b and reveal a highly structured electrode surface. PEC measurements were then performed in a three-electrode configuration using an aqueous OH⁻ electrolyte (1 M NaOH, pH 13.6), a Pt counter electrode, and Ag/AgCl as the reference electrode. Photocurrent densities were measured as a function of applied voltage under simulated 1 sun AM1.5 solar irradiation (see Supporting Information (SI)). As in previous studies, the α -Fe₂O₃ PEC performance was found to depend strongly on surface morphology, Si doping level, and growth temperature, among other parameters.³

Figure 2a shows dark and photocurrent densities for an α -Fe₂O₃ photoanode with backside illumination. Whereas the dark response is negligible up to 1.5 V vs RHE, the photoresponse shows a rise and plateau with an onset voltage of ~ 1 V vs RHE that typifies α -Fe₂O₃. Figure 1c,d show SEM images of a representative α -Fe₂O₃ photoanode following Co-Pi electrodeposition for 1 h as described in ref 7 (see SI). Extensive cracking of the \sim 200 nm thick catalyst layer occurs upon drying for the SEM measurement. Figure 1d shows a portion of the catalyst layer that has curled off of the α -Fe₂O₃ film upon drying, revealing its underside. This image shows the inverse mesostructure from the α -Fe₂O₃ anode, demonstrating that the catalyst layer conforms to the topology of the α -Fe₂O₃ surface. A high degree of interfacial contact between the $\alpha\mbox{-}Fe_2O_3$ and catalyst layers has thus been achieved. Figure 2a also shows the dark and photocurrent responses of the Co-Pi/α-Fe₂O₃ composite photoanode prepared by electrodeposition of the Co-Pi catalyst on

Potential vs. RHE (V)

1.4

1.2

(a)

0.8

1.0

Figure 2. (a) Dark (dashed) and photocurrent (solid) densities for α -Fe₂O₃ (red) and Co-Pi/ α -Fe₂O₃ (blue) photoanodes, collected using simulated AM1.5 illumination (1 sun, backside) at a scan rate of 50 mV/s. (b) Electronic absorption and (c) IPCE spectra for α -Fe₂O₃ and Co-Pi/ α -Fe₂O₃ (at 1.23 and 1 V vs RHE, respectively). The absorption spectrum of Co-Pi on FTO without α-Fe₂O₃ is included in (b), but no photocurrent was detected for these anodes

the same α -Fe₂O₃ photoanode. The major phenomenological observation is that modification of α-Fe₂O₃ with Co-Pi reduces the bias voltage required for solar PEC water oxidation by >350 mV, corresponding to a reduction from ~ 1.2 to $< \sim 0.9$ V that would be required from the PV of a water splitting PEC/PV tandem cell.

At 1.4 V (RHE), α -Fe₂O₃ photocurrent densities with front-side illumination are $\sim 2 \times$ greater than those with backside illumination (see SI), a common observation^{3b-d} attributable to the greater surface area of the anode front. In the Co-Pi/a-Fe₂O₃ anodes, however, front-side illumination did not greatly enhance the photocurrent, likely because of nonproductive absorption by the catalyst layer. Co-Pi absorbs throughout the visible spectral region (Figure 2b) but generates no detectable photocurrent, either on α -Fe₂O₃ or directly on FTO. IPCE measurements of the α -Fe₂O₃ (1.23 V vs RHE) and Co-Pi/\alpha-Fe₂O₃ (1 V vs RHE) photoanodes using backside illumination show essentially identical dispersion (Figure 2c), in both cases apparently deriving only from α -Fe₂O₃ excitation. Co-Pi thus behaves solely as a surface electrocatalyst. The composite photoanode of Figure 2c shows IPCE > 15% at 550 nm and 1 V vs RHE, conditions where α -Fe₂O₃ alone shows negligible photocurrent (Figure 2a). This IPCE maximizes at 450 nm (18%) before decreasing again below \sim 400 nm because of the decreasing light penetration depth (Figure 2b).

Several control experiments were performed to test the possibility that the cathodic photocurrent shift might derive from unintended side reactions. The possibility of dissolved cobalt acting as a redox mediator, or of an unidentified sacrificial reagent contributing to photocurrent, was eliminated by the following observations: (i) Addition of solvated Co²⁺ to the electrolyte had no noticeable effect on photocurrent densities (see SI); (ii) Replacement of the PEC electrolyte solution with new stock solution caused no change in photocurrent and did not lead to a photocurrent induction period; (iii) Continuous photocatalysis at 1 V vs RHE for >10 h showed no change in performance. We conclude that the cathodic shift in Figure 2 reflects the ability to drive eq 1 at much smaller overpotentials using the composite photoanodes than with α -Fe₂O₃ alone.

Most α -Fe₂O₃ PEC cells operating under similar conditions show negligible photocurrent densities below 1 V vs RHE. Modification of the α -Fe₂O₃ surface by adsorption of Co²⁺ from aqueous 10 mM $Co(NO_3)_2$ was previously shown to cause an $\sim 17\%$ increase in current density at 1.23 V vs RHE and an 80 mV cathodic shift of the onset potential.^{3c} Similarly, growth of RuO₂ onto α-Fe₂O₃ surfaces led to a 120 mV cathodic shift of the onset potential with $< 80 \,\mu$ A/cm² at 1 V vs RHE.^{4b} Interestingly, α -Fe₂O₃ nanorods have shown greater relative

photocurrent densities at low bias than typical mesostructured α-Fe₂O₃ photoanodes, but with photocurrent densities of only $\sim 2 \mu A/cm^{2.6}$ We hypothesize that the conformal catalyst deposition facilitates interfacial hole transfer from α -Fe₂O₃ to Co-Pi, allowing photon absorption and redox catalysis to be effectively decoupled while retaining photocurrent densities. Efficient hole transfer from α -Fe₂O₃ to Co-Pi should enhance the electron gradient in the α-Fe₂O₃ mesostructure under irradiation, also contributing to the driving force for electron diffusion to the FTO and reducing deleterious carrier recombination processes. Catalyst electrodeposition onto α -Fe₂O₃ may also passivate surface defects.

The experimental results for the Co-Pi/a-Fe₂O₃ composite photoanodes are summarized in Scheme 1. Photoexcitation of α -Fe₂O₃ generates an electron-hole pair. Photogenerated holes are trapped by the Co-Pi catalyst, which excels at water oxidation. Photogenerated electrons migrate to the FTO back contact and pass through the circuit to the Pt counter electrode, where water reduction occurs in the three-electrode configuration. The present results demonstrate that partitioning photoabsorption, charge separation, and redox catalysis in composite photoanodes offer promising opportunities for improving solar water-splitting PECs. A complete microscopic understanding of these composite photoanodes will require a better understanding of the Co-Pi/ α -Fe₂O₃ interface and of hole transfer across this interface. Experiments to address these issues are presently underway.

Acknowledgment. This work was funded by the Dreyfus Foundation, ACS-PRF (AC), the NSF (IGERT, DGE-050-4573), the University of Washington, the UW Initiative Fund (UIF), and was partially conducted at the UW Nanotechnology User Facility, a member of NNIN. The authors thank Dr. K. Sivula, Prof. S. Adler, and Prof. M. Grätzel for stimulating discussions.

Supporting Information Available: Experimental details, α-Fe₂O₃ front vs backside photocurrent data, and Co(OH)42- absorption spectrum. This information is available free of charge via the Internet at http:// pubs.acs.org.

References

- (1) (a) Heller, A. Science 1984, 223, 1141. (b) Grätzel, M. Nature (London) 2001, 414, 338. (c) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729. (d) Lewis, N. S. Science 2007, 315, 798.
- (a) Grimes, C.; Varghese, O. K.; Ranjan, S. Light, Water, Hydrogen; Springer: 2007. (b) van de Krol, R.; Liang, Y.; Schoonman, J. J. Mater. Chem. 2008, 18 2311
- (3) (a) Duret, A.; Grätzel, M. J. Phys. Chem. B 2005, 109, 17184. (b) Cesar, I.; Kay, A.; Gonzalez Martinez, J. A.; Grätzel, M. J. Am. Chem. Soc. 2006, 128, 4582. (c) Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128, 15714. (d) Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Grätzel, M. J. Phys. Chem. C 2009, 113, 772.
- (4) (a) Ingler, W. B.; Khan, S. U. M. Electrochem. Solid-State Lett. 2006, 9, G144. (b) Majumder, S. A.; Khan, S. U. M. Int. J. Hydrogen Energy 1994, 19, 881
- (5) Kleiman-Shwarsctein, A.; Hu, Y.-S.; Forman, A. J.; Stucky, G. D.; McFarland, E. W. J. Phys. Chem. C 2008, 112, 15900.
- (6) Lindgren, T.; Wang, H.; Beerman, N.; Vayssieres, L.; Hagfeldt, A.; Lindquist, S.-E. Sol. Energy Mat. Sol. Cells 2002, 71, 231.
- (7) (a) Kanan, M. W.; Nocera, D. G. Science 2008, 321, 1072. (b) Surendranath, Y.; Dincä, M.; Nocera, D. G. J. Am. Chem. Soc. **2009**, 131, 2615. (c) Lutterman, D. A.; Surendranath, Y.; Nocera, D. G. J. Am. Chem. Soc. **2009**, 131. 3838.

JA9016478